BTOE 005: CHEMICAL SENSORS AND BIOSENSORS

Course Objective: To understand the deep insight into chemical sensors (including biosensors) and their practical applications.

Credits: 03

L-T-P-J: 3-0-0-0

Module	Course Content					
INO.		Hours/ Percentage				
I	Biosensors and Immuno biosensors : Introduction – amperometric enzyme electrodes- characteristics- enzyme activity determinations – biosensors for enzyme immunoassay – Potentiometric enzyme electrodes – electrode characteristics and performance –pH glass and ion-selective electrodes – solid-state pH and redox electrodes –gas electrodes. Potentiometric immunobiosensors – immobilization techniques – analytical applications. Principle and measurements of enzyme thermistor devices. Transducer – experimental techniques – types of biological element: immobilized enzymes – immobilized cells – determination of enzyme activities in solution	10//25%				
Π	Chemically mediated and redox based hydro-gel based biosensors: Introduction – sensing chemistry and materials –sensing techniques –transducer types. Transducer-based fiber optic biosensors – Optical biosensors based on competitive binding. Electron conducting redox polymer in biosensors –enzyme electrodes – specific sensor examples. Hybridization at oligonucleotide sensitive electrodes: function of oligonucleotide sensitive electrodes – hybridization efficiency and sensitivity – probe oligonucleotide structure and dynamics – hybridization conditions – hybridization kinetics.	10//25%				
ш	Fluorophore and chromophores based fiberoptic biosensors : Enzyme based nonmediated fiberoptic biosensors – chromophores and flurophore detection. Bioluminescence and chemiluminescence based fiberoptic sensors – bioluminescence and chemiluminecent reactions – analytical potential of luminescent reactions – applications	10/25%				

	Determination of metal ions by fluorescence anisotropy: Theory of anisotropy based						
IV	determination of metal ions – fluorescent aryl sulfonamides for zinc determination-	10/25%					
	removal of zinc from carbonic anhydrase – determination of zinc using reagent approach						
	- determination of copper and other ions by using reagentless approach.						

Text Books/ Reference Books:

- Copper J. M. and Cass E. G. A., "Biosensors", Oxford University Press, 2004.
- Brian Eggins, "Chemical Sensors and Biosensors", John Willey & Sons, 2002.
- Copper J. M. and Cass E. G. A., "Biosensors", Oxford University Press, 2004.
- Blum L. J. and Coulet P. R., "Biosensor Principles and Applications", Marcel Dekker Inc., 1991.

Course Outcome:

CO1: Students can describe the operation principles for chemical sensors based on electrochemical, optical, mass and thermal transduction

CO2: Students can explain the operation principle of potentiometric, amperometric and conductometric sensors and give examples of their applications

CO3: Students can give examples of chemical sensors based on conducting polymers.

CO4: Students can determine the selectivity coefficients of ion-selective electrodes

CO5: Students can describe the operation principles for biosensors and give examples of their applications

MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	М	М	Н	Н	L	М	Н	Μ	М	L	L	Н
CO2	н		Н	н	L	М	Н	Μ	М			Н
CO3	М	Μ	Н	H	L	М	Н	L		L	М	Н
CO4	М		L	H	L	L	L		L		М	L
CO5	М	М	L	М	L	L	Н	L	L	Н	L	L

H = Highly Related; M = Medium; L = Low